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ABSTRACT: Random d-regular graphs have been well studied when d is fixed and the num-
ber of vertices goes to infinity. We obtain results on many of the properties of a random
d-regular graph when d = d�n� grows more quickly than

√
n. These properties include con-

nectivity, hamiltonicity, independent set size, chromatic number, choice number, and the size
of the second eigenvalue, among others. © 2001 John Wiley & Sons, Inc. Random Struct. Alg.,
18, 346–363, 2001

1. INTRODUCTION

The concept of random graphs is one of the central notions in modern discrete
mathematics. Random graphs have been studied intensively during the last 40 years,
with thousands of papers and two excellent monographs by Bollobás [8] and by
Janson et al. [19] devoted to the subject and its diverse applications.
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Strictly speaking, the term “random graph” comprises several models of random
graphs which are quite different in many aspects. A common feature of practically
all of these models is that the ground set of the probability space is composed of
all graphs on n labeled vertices. Usually asymptotic properties of random graphs
are studied, that is, the number of vertices n is assumed tending to infinity. Putting
different probabilities on n-vertex graphs results in different probability spaces.

The most commonly used model of random graphs, sometimes synonymous with
the term “random graphs,” is the so-called binomial random graph G�n�p�. This is a
probability space of all labeled graphs on n vertices, where the probability assigned
to a graph G = �V� E� is p�G� = p�E��1− p��n2�−�E�. It is easy to see that G�n�p� is
in fact a product probability space, in which every edge is chosen independently and
with probability p = p�n�. The relative simplicity of the above definition indicates
that this model is quite accessible, and indeed many properties of the random graph
G�n�p� are known and well understood. Below we state just a few of them, directly
relevant to the contents of this paper. We will use the notation G�n�p� to denote
both the probability space defined above and a random graph on n vertices chosen
from the probability space.

As mentioned above, asymptotic properties of G�n�p� are usually of interest. We
thus will assume that the number of vertices n tends to infinity. A sequence of graph
properties �An� holds asymptotically almost surely in G�n�p�, or a.a.s. for brevity,
if An is a set of graphs on n vertices and limn→∞ PG�n�p��An� = 1.

Here is a list of some of the asymptotic properties of G�n�p� relevant to the
topic of the present paper. Let c be any constant satisfying 0 < c < 1.

1. If p�n� ≤ c and np → ∞ then a.a.s. in G�n�p� the independence number is

α�G� = �1 + o�1��2 log�np�
log 1

1−p

(see Bollobás and Erdős [10], Matula [28], and Frieze [15]).
2. If p�n� ≤ c and np → ∞ then a.a.s. in G�n�p� the chromatic number of G is

χ�G� = �1 + o�1��
n log 1

1−p
2 log�np�

(see Bollobás [9] and Łuczak [23]).
3. The choice number (also known as the list-chromatic number) of a graph G is

the minimum k such that G is k-choosable, which means that if each vertex v
of G is given a list Lv of k permitted colors, there is (for every choice of such
lists) a proper vertex coloring of G such that for each vertex v, the color of v
is a member of Lv. If p�n� ≤ c and np → ∞ then a.a.s. in G�n�p� the choice
number χl�G� of G satisfies

χ�G� ≤ χl�G� ≤ �2 + o�1��χ�G�

(see Krivelevich and Vu [22]). If, moreover, p�n� ≥ n−1/4+ε for some ε > 0,
then a.a.s. in G�n�p� the choice number of G and its chromatic number have
the same asymptotic value (see Alon [1] and Krivelevich [21]);
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4. If p�n� = log n+ω�n�
n

, where ω�n� is any function tending to infinity arbitrarily
slowly with n, then a.a.s. G�n�p� is connected (see Erdős and Rényi [14]).
Also, for arbitrary p�n�, a.a.s. in G�n�p� the vertex connectivity of G is equal
to its minimal degree (see Bollobás and Thomason [11]).

5. If p�n� = log n+log log n+ω�n�
n

for any function ω�n� tending to infinity arbitrar-
ily slowly with n, then a.a.s. G�n�p� is hamiltonian (see Komlós and Sze-
merédi [20]).

6. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix of G and
let p�n� = c. Then a.a.s. in G�n�p�

λ1 = �1 + o�1��np and max
2≤i≤n

�λi� = 2
√
pqn+O�n1/3 log n�

(see Füredi and Komlós [17]).

In this paper we study a different model of random graphs—random regular
graphs. For a positive integer-valued function d = d�n� we define the model Gn�d

of random regular graphs consisting of all regular graphs on n vertices of degree
d with the uniform probability distribution. We say that an event holds a.a.s. in
Gn�d if its probability tends to 1 as n → ∞, with n restricted to those integers for
which dn is even. As with G�n�p�, we will use the notation Gn�d to denote both
the probability space and a random graph in it.

Properties of random regular graphs were first studied in the late 1970s, almost
all the results being obtained using the configuration or pairing model of random
regular graphs introduced in its simplest form by Bollobás [6]. This model is only
amenable for d relatively small compared to n, and at the present time nothing
has really been published for d bigger than

√
n. However, Boldi and Vigna [5] and

Cooper et al. [13] have obtained such results simultaneously with the present paper.
For comparison with the results given above about G�n�p�, we note here that for

fixed d ≥ 3, Gn�d is a.a.s. d-connected, as shown by Bollobás [7] and Wormald [33],
and hamiltonian, as shown by Robinson and Wormald [29, 30]. For properties
such as independent set size and chromatic number, various bounds are known.
Wormald [34] gave a description of what is known about these and other proper-
ties. Note that Gn�d is not a monotone model, so monotone properties which are
a.a.s. true in Gn�d are not necessarily so in Gn�d+1. However, this statement is true
for every fixed d except d = 1, by contiguity (see [19, 34]).

Our aim here is to provide a range of results for random regular graphs of high
degree, by which we mean d rather larger than

√
n. Some of our arguments could

easily be extended below this lower bound, while others did not reach that low. We
use this as a general cutoff mainly because results already in the literature for fixed
d have a reasonable chance to be extended up to

√
n. This is because the switching

method has already provided quite accurate results for such d (as by McKay and
Wormald [24] for example), as well as permitting enumeration of graphs with given
degrees up to this point as by McKay and Wormald [26]. We focus on some of the
main properties, such as those given above for G�n�p�. Since the standard model
is difficult to analyze for such d we use other tools, of which there are two main
ones. The first is the method of switchings, which we extend in the present paper to
give information on random regular graphs with degrees o�n�. This is not powerful
enough to give an asymptotic formula for the number of d-regular graphs but is
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sufficient for our purposes. The second main tool is the asymptotic formula for the
number of near-regular graphs of degrees approximately cn given by McKay and
Wormald [25]. Additionally, we are able to transfer properties of G�n�p� to Gn�d

in some cases using bounds on the numbers of regular graphs obtained by Shamir
and Upfal [31]. Our results overlap partly with those in [13], which obtains similar
results on connectivity and hamiltonicity but for a different range of d (3 ≤ d ≤ cn
for some small constant c). One of the main results in [5] is similar to some of ours,
being that in Gn�d for n/ log n < d = o�n�, a.a.s. every three vertices have at least
one neighbor in common (cf. Theorem 2.1). The method used there is basically the
use of the asymptotic formula mentioned above.

We close this section with some conventions and notation. The vertex set of
graphs with n vertices is assumed to be �1� 2� � � � � n� = �n�. A function which tends
to infinity arbitrarily slowly with n is denoted ω�n�. If log has no suffix, it denotes
the natural logarithm. The neighborhood N�u� of a vertex u is the set of vertices
adjacent to it. The codegree of two vertices u and v is codeg�u� v� = �N�u� ∩N�v��.

2. RESULTS AND CONSEQUENCES

The proofs of the main results in this section are given in the appropriate later
sections.

Theorem 2.1. (i) Suppose that d2/n > ω�n� log n and d < n− cn/ log n for some
constant c > 2/3. Then in Gn�d,

P�max
u�v

�codeg�u� v� − d2/n� < Cd3/n2 + 6d
√

log n/
√
n� → 1�

where C is some absolute constant. If d is bounded below by cn/ log n, then C can be
defined to be 0.
(ii) For any δ > 0, there exists ε > 0 such that if 3 ≤ d = O�n1−δ� we have that

a.a.s. for all u and v in �n�, codeg�u� v� < max�d1−ε� 3�.

For the case d � n1/3, the asymptotic behavior of the independence number of
Gn�d was computed by Frieze and Łuczak [16].

Theorem 2.2. Let
√
n log n < d = d�n� < n− cn/ log n for some constant c > 2/3.

Then for some function g�n� → 0, the independence number of Gn�d is a.a.s. at most
�2 + g�n�� logb d where b = n/�n− d�.

Theorem 2.3. Let ε > 0. If n6/7+ε ≤ d ≤ 0�9n, then there exists a function h�n� → 0
so that a.a.s. in Gn�d every subset V0 ⊂ V �G� of size �V0� ≥ n/ log4 n contains an
independent set of size at least �2 − h�n�� logb d, where b = n/�n− d�.

The above two theorems clearly imply that in the range n6/7+ε ≤ d ≤ 0�9n the
asymptotic value of the independence number of Gn�d is 2 logb d with b = n/�n−
d�. An easy analysis shows that this value coincides with the asymptotic value of the
independence number of the binomial random graph G�n�p� with edge probability
p = d/n.
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In [34] it was conjectured that Gn�d is a.a.s. d-connected provided 3 ≤ d ≤ n− 4.
The following result overlaps with one of the main results of [13] to prove this
conjecture.

Theorem 2.4. Let G ∈ Gn�d and let
√
n log n < d ≤ n − 4. Then a.a.s. G is d-

connected and hamiltonian.

The statement of the theorem trivially holds (using say Dirac’s theorem for hamil-
tonicity) also for d > n− 4 except for d-connectivity, when d = n− 3. In that case
the complement of Gn�d is a random 2-regular graph which with nonzero prob-
ability has a cycle of length 4. Deleting the other n − 4 vertices from G gives a
disconnected graph.

For large d we can show, using the greedy algorithm combined with the bound
on the independence number, that χ�Gn�d� = �1 ± o�1��χ�G�n� d/n��. The same
can be done for the choice number.

Theorem 2.5. For every constant ε > 0, if n6/7+ε ≤ d ≤ 0�9n, then a.a.s. in Gn�d

χ�G� = �1 + o�1��n/2 logb d�

where b = n/�n− d�.

It is important to observe that by the results in [9, 23], the chromatic number of
G�n�p� also has asymptotic value n/2 logb d with d = np and b = n/�n− d�. (For
the case d = o�1� we get a more familiar expression χ�G� = �1 + o�1��d/2 log d.)
Therefore the chromatic numbers in the random regular graph model Gn�d and
the binomial random graph model G�n�p� of the corresponding density p = d/n
coincide asymptotically.

A similar estimate for χ�Gn�d� was given in [16] for small d, d ≤ n1/3−δ, where δ
is an arbitrary positive constant less than 1/3. It was shown that for d in this range
again the chromatic numbers in Gn�d and in G�n� d/n� are asymptotically equal.

It was proved in [21] that for n3/4+ε ≤ p�n�n ≤ 0�9n, the choice number of the
random graph G�n�p� has the same asymptotic value as its chromatic number. A
crucial technical instrument of the argument in [21] was an exponential estimate on
the probability of nonexistence of an independent set of an almost optimal size in
G�n�p�, parallel to our Theorem 2.3. Using the technique developed in [21], we
can show a similar result for the choice number of Gn�d.

Theorem 2.6. Let d satisfy n6/7+ε ≤ d ≤ 0�9n for a positive constant ε. Then a.a.s.
in Gn�d

χl�G� = �1 + o�1��χ�G� = �1 + o�1�� n

2 logb d
�

where b = n/�n− d�.

We omit the details of the proof.
For the remaining cases, we do not know the asymptotic behavior of χ�Gn�d�

and χl�Gn�d�. However, we can show that a.a.s. they both have the same order of
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magnitude as χ�G�n� d/n��. It is, of course, plausible to think that all three are
a.a.s. asymptotically equal.

Theorem 2.7. Let 0 < α < 1/2 be a positive constant; then for any nα < d < n1−α,
a.a.s.

"�d/ log d� = χ�Gn�d� ≤ χl�Gn�d� = O�d/ log d��
Let λ1�Gn�d� ≥ λ2�Gn�d� ≥ · · · ≥ λn�Gn�d� be the eigenvalues of the adjacency

matrix of Gn�d. Since a graph in Gn�d is d-regular and a.a.s. connected, it is clear
by the Perron–Frobenius theorem that λ1�Gn�d� = d and it has multiplicity 1, a.a.s.
The really exciting parameter is, in fact, ρ�Gn�d� = max��λ2�Gn�d��� �λn�Gn�d���. The
following theorem says that a.a.s., ρ�Gn�d� is significantly less than d.

First set x = K
√
n log n/d if d > cn/ log n or ω�n�√n log n ≤ d < n3/4 log1/4 n

and x = Kd/n if cn/ log n ≥ d ≥ n3/4 log1/4 n, where K is a sufficiently large con-
stant so that almost surely the number of common neighbors of any two vertices is
at most �1 + x�d2/n (see Theorem 2.1). It is clear that x = o�1�.

Theorem 2.8. For all d satisfying the assumption of Theorem 2.1 and x defined as
above, a.a.s.

ρ�Gn�d� = O

(
d

(
n1/4

d1/2 + x1/4
))

= o�d��

For a d-regular graph G, the quantity ρ�G�/d is called the mixing rate of G.
Theorem 2.8 implies that in most regular d-regular graphs, a random walk, starting
from a fixed vertex (say 1), mixes very fast. Here we say that a random walk mixes
in T steps, if after T steps, the variation distance between the obtained distribution
and the stationary distribution is at most 1/2.

Corollary 2.9. For all d > ω�n�√n log n, set s = �n1/4/d1/2 + x1/4�−1. Then a.a.s.
in Gn�d, a random walk starting from a fixed vertex mixes in O�logs n� steps.

The isoperimetric number of a graph G, I�G�, is the minimum value of the ratio
�∂X�/�X� over all subsets X ⊂ V with at most n/2 vertices, where ∂X is the set of
edges with exactly one point in X.

Corollary 2.10. For all d > ω�n�√n log n, a.a.s. I�Gn�d� ≥ � 1
2 − o�1��d.

Proof. Given a d-regular graph G, the conductance φ�G� is defined as the mini-
mum of n�∂X�

d�X��V \X� over all subsets X ⊂ V with at most n/2 vertices. It is well known
(see [18]) that

φ�G� ≥ 1 − ρ�G�/d�
By Theorem 2.8, it follows that φ�Gn�d� ≥ 1−o�1� a.a.s. On the other hand, I�G� ≥
dφ�G�/2 by definition and this completes the proof. It is also clear that the constant
1
2 is the best possible.

For a special value of d, Theorem 2.8 also has a consequence for the number of
induced copies of a fixed graph. Assume that G is n/2-regular and ρ�G� = o�n�.
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For such G, it has been proved that for any fixed graph H on r vertices, the number
of induced copies of H in G is �1 + o�1��nr2−�r2�. (See, e.g., Alon and Spencer [4,
Chap. 9].)

Corollary 2.11. For any fixed graph H on r vertices, the number of induced copies of
H in Gn�n/2 is a.a.s. �1 + o�1��nr2−�r2�.

3. BOUNDS ON CODEGREES AND INDEPENDENT SETS

When d is not o�n�, we will need the following corollary of the asymptotic for-
mula for the number of graphs with given degrees which was proved in [25]. Let
N�d1� � � � � dn� denote the number of labeled simple graphs of order n with degree
sequence �d1� d2� � � � � dn�. Then [25, Theorem 3] implies the following.

Proposition 3.1. Let dj = dj�n�, 1 ≤ j ≤ n be integers such that min�λ� 1 − λ� >

c/ log n for some c > 2
3 , where

∑n
j=1 dj = λn�n− 1� is an even integer, and �λn− dj� =

O�n1/2+ε� uniformly over j for sufficiently small fixed ε > 0. Then

N�d1� � � � � dn� = f �d1� � � � � dn��λλ�1 − λ�1−λ��n2�
n∏

j=1

(
n− 1
dj

)
�

where

(i) f �d1� � � � � dn� = O�1�, and
(ii) if max��λn − dj� = o�√n� then f �d1� � � � � dn� ∼ √

2e1/4 (uniformly over the
choice of such dj).

The restriction on λ is perhaps artificial since this result is known to hold also for
λ = o�n−1/2�, and it is conjectured in [25] to hold for all λ for which n2 min�λ� 1−
λ� → ∞.

Proof of Theorem 2.1. We begin with (i). For each of the following two cases
(which have a nontrivial overlap), let u� v ∈ �n� and let �k denote the set of d-
regular graphs on n vertices with codeg�u� v� = k. Let G ∈ �k.

Case 1. d = o�n�. For this case we use switchings (see [34]) of the type introduced
by McKay and Wormald [27].

An operation called a forward switching consists of choosing a vertex w ∈ N�u� ∩
N�v� and edges xy and x′y ′ of G, deleting the edges uw, vw, xy, and x′y ′, and
inserting new edges xu, yw, y ′w, and x′v so as to obtain another d-regular graph
H on the same vertex set. Choices of w, x, y, x′, and y ′ which would cause multiple
edges, where for instance xu is already an edge, or unwanted duplication of vertices
such as x and y or y ′, are forbidden. Cases causing a multiple edge number at most
O�kd3n� and those with a duplicated vertex are O�kd2n�. So the number of forward
switchings possible is

kd2n2 −O�kd3n��
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Note that the constant implicit in O� � here is independent of k. A reverse switching
is applied to H ∈ �k−1 by choosing x ∈ N�u� \N�v�, x′ ∈ N�v� \N�u� and a path
ywy ′. Delete the edges xu, yw, y ′w, and x′v and insert uw, vw, xy, and x′y ′. Again
choices causing any of these vertices to be repeated or multiple edges to occur are
forbidden, and they are O�d−k�2d3 in number. So the number of reverse switchings
is

�d − k�2nd2 −O�d − k�2d3�

It follows that

��k�
��k−1�

= �d − k�2
kn

�1 +O�d/n��� (1)

So define k0 to be the (real) solution of �d − k�2 = kn. Then

k0 = d2

n

(
1 +O

(d
n

))
� (2)

We can now choose a C sufficiently large that for k > k0 + Cd3/n2 + xd/
√
n, (1)

implies

��k�
��k−1�

<
�d − k0�2

k0n
× 1

1 + x
√
n/d

< e−x
√
n/2d

for x = o�d/√n�. It follows that for k1 = k0 + Cd3/n2 + Bd
√

log n/
√
n and k2 =

k1 + Bd
√

log n/
√
n,

��k2
�

��k1
� < n−B2/2�

By (1), �Ck� < �Ck2
� for k > k2. Thus P�codeg�u� v� > k2� = O�n1−B2/2�. The lower

tail is bounded in exactly the same way, again using (1). Choosing B = 3 and not-
ing (2) gives

P��codeg�u� v� − k0� > Cd3/n2 + 6d
√

log n/
√
n� = o�n−2�� (3)

Case 2. min�d� n − d� > cn/ log n for c > 2/3. Assume first that u and v are
nonadjacent. Delete u and v from G to obtain a graph with k vertices of degree
d − 2, 2d − 2k of degree d − 1 and the rest of degree d. Such graphs are in one–
one correspondence with elements of �k provided the vertices of degree d − 1 are
divided into two classes: d − k, which were the neighbors of u, and the rest, which
were the neighbors of v. The number of graphs with such a degree sequence is
given asymptotically by Proposition 3.1(ii). Multiplying by the number of orderings
of the degrees of the vertices and the selection of the two classes as above gives

��k� ∼
�n− 2�!√2e1/4�λλ�1 − λ�1−λ��n−2

2 �
k!�d − k�!2�n− 2 − 2d + k�!

(
n− 3
d

)n−2−2d+k(n− 3
d − 1

)2d−2k(n− 3
d − 2

)k

�
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where λ = d�n−4�
�n−2��n−3� . The asymptotics is uniform over all k. So letting tn�d�k denote

the product of the factorials and binomials in the above formula, we only have to
bound tn�d�k for k away from d2/n. Note that

tn�d�k
tn�d�k−1

= �d − k�2
k�n− 2d + k�

(
1 +O� 1

k
� +O� 1

d−k�
)
�

and so this ratio is 1 if k = d2/n+ O�1�. The rest of the argument is as in Case 1
to obtain (3) with C = 0.

If u and v are adjacent, almost the same argument gives the same result.
Finally, in both Case 1 and Case 2, summing (3) over all pairs �u� v� gives an

upper bound on the probability required for part (i) of the theorem.
To verify part (ii), note that ε > 0 and ε′ > 0 can be chosen sufficiently small so

that for k ≥ k0 = �d1−2ε� the ratio (1) is O�n−ε′ �, and hence for ε′�dε − 1� > 4,

P�codeg�u� v� ≥ d1−ε� ≤ ∑
k≥d1−ε

��k�
��k0

�

= O

(
n
(
n−ε′

)dε−1
)

= O�n−3��

On the other hand, for bounded d, (1) gives P�codeg�u� v� ≥ 3� = O�n−3�. Sum-
ming the bounds over all u and v gives (ii).

Proof of Theorem 2.2.

Case 1. d = o�n�. We use switchings as in Case 1 of the proof of Theorem 2.1.
Let A ⊆ �n�, let a = �A�, and let �k denote the event that exactly k edges have
both ends in A. For G ∈ �k with k > 0, choose an edge uv with u, v ∈ A and
choose two other edges u′v′ and u′′v′′ of G. Delete these three edges and add the
edges vu′, v′u′′, and v′′u. This procedure is called a forward switching if it produces
a graph H in �k−1. The reverse switching is applied to such an H by choosing two
edges uv′′ and vu′ in H where u, v ∈ A, and an edge v′u′′, and deleting these three
edges and adding edges uv, u′v′, and u′′v′′ (provided that a member of �k results).
The number of ways to apply a forward switching is

kn2d2�1 +O�d/n���

For a reverse switching, it is((
a
2

)− �k− 1�)nd3�1 +O�d/n��� (4)

(Note that if the switching is chosen to be the simpler version in which only one
random edge is chosen, the reverse switching count is highly dependent on the
graph H, in particular, on how many paths of length 3 have both ends in A.) Hence

��k�
��k−1�

∼
(
a
2

)
d

kn



RANDOM REGULAR GRAPHS OF HIGH DEGREE 355

provided k = o�a2�. Now fix k = �(a2)d/n� and assume k → ∞. Then

��k�
��0�

= eo�k��(a2)d/n�k/k! = ek+o�k��

and hence P��0� = e−k+o�k�. The probability there is at least one independent set
of vertices of G of cardinality a is at most

(
n
a

)
P��0� < � en

a
�ae−k+o�k�. Summing this

over a > �2+ o�1��n log d/d for a suitable function o�1�, and using (4) to show that
values of k larger than o�a2� really can be ignored, gives a result which is o�1�. So
the theorem follows in this case since log b = − log�1 − d/n� ∼ d/n.

Case 2. min�d� n − d� > cn/ log n for c > 2/3. We first give a lemma which
assumes only that Proposition 3.1 holds for the values of d involved. In Gn�d, define
Xa to be the number of independent sets of cardinality a.

Lemma 3.2. Assume that λ�n� = d/�n− 1� satisfies the hypotheses of Proposition 3.1,
and suppose that a = O�n1/2+ε� for ε as in that proposition. Then

EXa ≤ exp� 1
2a�a− 1� log�1 − λ� + a log n+ o�a log n���

where λ = d/�n− 1�.

The lemma is proved next. Combined with Markov’s inequality, the lemma im-
plies the theorem in this second case, since here log�1 − λ� ∼ − log b and log n ∼
log d.

Proof of Lemma 3.2. If the vertices n − a + 1� � � � � n form an independent set
in G ∈ Gn�d, then deleting all these vertices gives a graph with degree sequence
d − h1� � � � � d − hn−a where hi is the degree of i in the graph H consisting of just
those edges incident with deleted vertices. Hence, using Proposition 3.1(i) to bound
the number of possibilities for G− E�H�, and (ii) to estimate �Gn�d�,

EXa = O�1�
(
n

a

)∑
H

g�λ̃��n−a��n−a−1�/2

g�λ�n�n−1�/2

(
n− 1
d

)−a n−a∏
i=1

(
n−a−1
d−hi

)
(
n−1
d

) (5)

where λ̃ = d�n−2a�
�n−a��n−a−1� and g�x� = xx�1− x��1−x�. Here

(
n
a

)
is the number of choices

of an independent set.
We can bring order into chaos by eliminating the summation over H. Note that(

n−a−1
d−hi

)
(
n−1
d

) = �d�hi�n− d − 1�a−hi
�n− 1�a

≤ dhi�n− d − 1�a−hi
�n− 1�a × n− 1

n− a
�

where �x�k denotes x�x− 1� · · · �x− k+ 1�. An easy way to see why the inequality
holds is by considering the equivalent inequality

hi−1∏
i=1

(
1 − i

d

) a−hi−1∏
i=1

(
1 − i

n− d − 1

)
≤

a−2∏
i=1

(
1 − i

n− 1

)
�
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Rewrite the a− 2 factors in the expression on the left hand side as s1 ≥ · · · ≥ sa−2.
The number of these which are strictly greater than 1− i

n−1 is less than or equal to
� id
n−1� from the first product and less than or equal to � i�n−1−d�

n−1 � from the second
product. Hence si ≤ 1 − i

n−1 , and the inequality follows. We now have

n−a∏
i=1

(
n−a−1
d−hi

)
(
n−1
d

) ≤ dad�n− d − 1�a�n−a−d�
�n− 1�a�n−a� ×

(
n− 1
n− a

)n−a

= λλa�n−1��1 − λ��1−λ�a�n−1�−a�a−1� ×
(
n− 1
n− a

)n−a
� (6)

Also note that λ̃− λ = −λa�a− 1�/��n− a��n− a− 1��; therefore using the Taylor
expansion of the function log g�λ� we obtain

log g�λ̃� − log g�λ� = − a�a− 1�λ
�n− a��n− a− 1� log

(
λ

1 − λ

)
+O�a4�1 − λ�−1n−4��

Hence

g�λ̃��n−a��n−a−1�/2

g�λ�n�n−1�/2 = g�λ�−an+a�a−1�/2 exp
(
− a�a−1�λ

2 log λ
1−λ +O�a4 log n/n2�

)
= λ−λan�1 − λ��1−λ��−an+a�a−1�/2� exp�o�a log n��� (7)

where we used 1/�1 − λ� = O�log n�, log�λ/�1 − λ�� = o�log n� and a = o�n2/3�.
It is convenient to multiply the factor

(
n−1
d

)−a
in (5) by the number of terms in

the summation, which is at most
(
n−a
d

)a since each vertex of the independent set
chooses d neighbors from the other n− a neighbors. This product is

( �n− d�a−1

�n− 1�a−1

)a

< �1 − λ�a�a−1�� (8)

Thus (5) is bounded above by the product of
(
n
a

)
, (6), (7) and (8). Using

(
n
a

)
<

na and log n−1
n−a = a/n + o�a/n� gives the bound stated in the lemma (again using

− logλ = o�log n� and − log�1 − λ� = o�log n�).

Proof of Theorem 2.3. Let p = d/n. We will compare the probability that the
random graph G�n�p� contains a subset V0 of size �V0� = n/ log4 n without an inde-
pendent set of the desired size with the probability that G�n�p� is d-regular. The
former probability will be estimated from above using arguments which are by now
quite standard, to be presented here in a somewhat abridged form.

Let k0 = k0�n�p� be defined by

k0 = max

{
k �

(
n/ log4 n

k

)
�1 − p��k2� ≥ n3

}
�

One can show that k0 satisfies k0 ∼ 2 logb d with b = n/�n− d�.
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Denote m = n/ log4 n and consider a random graph G�m�p�. Let X be the
random variable counting the number of independent sets of size k0 in G�m�p�.
Denoting the expectation of X by µ and recalling the definition of k0, we get

µ =
(
m

k0

)
�1 − p��k02 � ≥ n3 �

Let
8 = 2

∑
�S���S′ �=k0

2≤�S∩S′ �≤k0−1

P�S� S′ form an independent set in G�m�p�� �

Then

8 =
(
m

k0

)
�1 − p��k02 �

k0−1∑
i=2

(
k0

i

)(
m− k0

k0 − i

)
�1 − p��k02 �−�i

2�

= µ2
k0−1∑
i=2

g�i�

where

g�i� =
(
k0
i

)(m−k0
k0−i

)�1 − p�−�i
2�(

m
k0

) �

One can check that g�2� = :�k4
0/m

2� is the dominating term in the above sum,
while the summands decrease quickly as i goes away from the ends of the interval
�2� k0 − 1�. This implies that 8 = :�µ2k4

0/m
2�. Also, as µ ≥ n3 we get 8 ≥ µ. Then

by the generalized Janson inequality (see, e.g., [4, Chap. 7])

P�X = 0� ≤ e−µ
2�1+o�1��/28 = e−"�m2/k4

0� �
Recalling the definition of k0, we see that the exponent above is of order
d4/n2 polylog n.

We next need a lower bound on the probability that a random graph in G�n�p�
is regular. We use the result of Shamir and Upfal [31, Eq. (35)] with φ�n� = d,
θ = 1

2 + δ for some δ > 0, choosing w�n� − φ�n� = �w�n�1−δ , to deduce that the
number of d-regular graphs on n vertices is at least( (

n
2

)
nd/2

)
exp�−O�nd1/2+2δ���

(Here there is a condition on d�n�; growing faster than log2 n is sufficient.) It follows
that for any fixed δ > 0

P�G�n� d/n� is d-regular� ≥ exp�−nd1/2+δ�� (9)

Comparing the last two exponents and using the assumption d ≥ n6/7+ε, we obtain
that the probability that G�n� d/n� is d-regular is much higher asymptotically than
the probability that G�n� d/n� contains a large subset without an independent set
of size k0. Therefore, a.a.s. for Gn�d where d lies in the range given in the theorem
statement, every subset V0 of size �V0� ≥ n/ log4 n spans an independent set of size
k0. The theorem is proven.
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4. CONNECTIVITY AND HAMILTONICITY

In this section we prove that dense d-regular graphs with some pseudo-random
properties are d-connected. As an immediate corollary we obtain that for√
n log n < d ≤ n− 4 a random d-regular graph on n vertices is a.a.s. d-connected

and hamiltonian.
First we need the following lemma, which is very similar in spirit to one obtained

by Alon et al. [2].

Lemma 4.1. Let G = �V� E� be a d-regular graph on n vertices such that √n log n <
d and for all u != v ∈ V , codeg�u� v� = �1 + o�1��d2/n. Then the number of edges
between any two B1� B2 ⊆ V , satisfying �B1� ≥ "�n� and �B2� ≥

√
n, is at least �1 +

o�1�� d
n
�B1��B2�.

Proof. Let A be the adjacency matrix of G, let J be the all 1 matrix whose rows
and columns are indexed by V , and put H = A − �d/n�J = �huv�u�v∈V . An easy
computation shows that the inner product of any two columns of H is relatively
small. Indeed, if N�v� and N�v′� denote the sets of all neighbors of v and v′,
respectively, and v != v′, then

∑
u∈V

huvhuv′ = �N�v� ∩N�v′�� − d

n
��N�v�� + �N�v′��� + n�d/n�2 = o�d2/n��

Also note that for any vertex v we have∑
u∈V

h2
uv = d�1 − d/n�2 + �n− d��d/n�2 = d − d2/n < d�

Therefore

∑
u∈B1

( ∑
v∈B2

huv

)2
≤ ∑

u∈V

( ∑
v∈B2

huv

)2

= ∑
u∈V

( ∑
v∈B2

h2
uv +

∑
v�v′∈B2�v !=v′

huvhuv′
)

= ∑
v∈B2

∑
u∈V

h2
uv +

∑
v�v′∈B2�v !=v′

∑
u∈V

huvhuv′

≤ �B2�d + �B2�2o�d2/n��

Let e�B1� B2� denote the total number of edges of G between B1 and B2. By the
Cauchy–Schwartz inequality and the last estimate

(
e�B1� B2� −

d

n
�B1��B2�

)2
=
( ∑
u∈B1

∑
v∈B2

huv

)2

≤ �B1�
∑
u∈B1

( ∑
v∈B2

huv

)2
≤ �B1��B2�d + �B1��B2�2o�d2/n��
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Hence

e�B1� B2� ≥ d

n
�B1��B2� −

√
�B1��B2�d − �B1�1/2�B2�o�d/

√
n�

> �1 + o�1��d
n
�B1��B2��

where the last inequality follows from the facts that d >
√
n log n, �B1� ≥ "�n�,

�B2� ≥
√
n, and n is sufficiently large. This completes the proof.

Using this lemma we obtain the following result about connectivity of pseudo-
random graphs.

Proposition 4.2. Let G = �V� E� be a d-regular graph on n vertices such that√
n log n < d ≤ 3n/4 and the number of common neighbors for every two distinct

vertices in G is �1 + o�1��d2/n. Then the graph G is d-connected.

Proof. Suppose that there is a subset S ⊂ V of size at most d − 1 such that
the induced graph G�V − S� is disconnected. Denote by B2 the set of vertices of
the smallest connected component of G�V − S� and set B1 = V − �S ∪ B2�. Then
�B1� ≥ "�n�, B2 contains at least two vertices, and there is no edge between B1
and B2. Therefore by Lemma 4.1 we obtain �B2� <

√
n. Let u and v be any two

distinct vertices in B2. Clearly all the neighbors of these two vertices belong to the
set B2 ∪ S which has size at most d +√

n. Since the degrees of v and u are equal to
d, this implies that the number of common neighbors of these two vertices is at least
2d − �d + √

n� = d − √
n. This is asymptotically much bigger than �1 + o�1��d2/n,

a contradiction.

Remark. Note that the same proof is valid for any upper bound on the degree d
of the form �1 − δ�n for any fixed δ > 0.

To complete the proof of Theorem 2.4 we need the following well known result
of Chvátal and Erdős [12].

Proposition 4.3. Let G be a k-connected simple graph such that G contains no in-
dependent set of size k+ 1. Then G has a hamiltonian cycle.

Proof of Theorem 2.4. Since, by Theorem 2.1 for
√
n log n < d ≤ 3n/4, Gn�d

almost surely satisfies the conditions of Proposition 4.2, we obtain that a.a.s. it is
d-connected. This together with result of Chvátal and Erdős implies that for the
same values of d, the random d-regular graph almost surely contains a hamiltonian
cycle. Here we used the fact that by Theorem 2.2, a.a.s. the size of the maximal
independent set in Gn�d is at most O�n log d/d� = O�√n� < d.

Next we consider the case when 3n/4 ≤ d ≤ n− 4. Since it is well known that any
graph on n vertices with minimum degree at least n/2 contains a hamiltonian cycle,
we obtain that G = Gn�d is hamiltonian. Let G′ be the complement of G. Note
that by definition G′ = Gn�d′ is a random d′-regular graph with d′ = n− 1− d ≥ 3.
Suppose that there is a subset S ⊂ V �G� of size at most d− 1 such that the induced
graph G�V − S� is disconnected. Denote by B2 the set of vertices of the smallest
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connected component of G�V − S� and set B1 = V − �S ∪ B2�. Then obviously
�B1� + �B2� = n − �d − 1� = d′ + 2, B2 contains at least two vertices, and there is
no edge between B1 and B2. This implies that G′ contains a complete bipartite
graph with bipartition �B1� B2�. We claim that this is a.a.s. impossible. Since �B1� ≥
��B1� + �B2��/2 = �d′ + 2�/2 we conclude that any two vertices in B2 have at least
�d′ + 2�/2 common neighbors. Therefore if �d′�ε > 2 then the number of common
neighbors is at least �d′ + 2�/2 > max��d′�1−ε� 3�. This contradicts the assertion of
Theorem 2.1. For 3 ≤ d′ ≤ 21/ε note that the number of edges in the subgraph of
G′ induced by B1 ∪ B2 is at least 2d′ > d′ + 2 = �B1� + �B2�. This again is a.a.s. not
possible since it is known (see, e.g., [34]) that for a fixed d′, any subgraph on d′ + 2
vertices of the random d′-regular graph almost surely contains at most d′ + 2 edges.
This completes the proof of the theorem.

5. COLORING

Proof of Theorem 2.5. The lower bound on χ�G� follows immediately from the up-
per bound on the independence number, given by Theorem 2.2, and the inequality
χ�G� ≥ �V �G��/α�G�.

To prove the upper bound, we will apply the approach of Bollobás [9] by first
covering most of the vertices of the graph by independent sets of asymptotically
optimal size and then coloring the remaining subgraph using degeneracy arguments.
We need the following proposition.

Proposition 5.1. Let n6/7+ε ≤ d ≤ 0�9n for a positive constant ε. Then a.a.s. in Gn�d

every s ≤ n/ log4 n vertices of G span less than sd/ log2 d edges.

Proof. Set p = d/n. The probability that the random graph G�n�p� contains a
subset of size s ≤ n/ log4 n spanning at least sd/ log2 d edges can be bounded from
above by

n/ log4 n∑
i=2d/ log2 d

(
n

i

)( (
i
2

)
id

log2 d

)
pid/log2 d ≤

n/ log4 n∑
i=2d/ log2 d


en

i

(
ei log2 d

2d

)d/log2 d

pd/log2 d



i

≤
n/ log4 n∑

i=2d/ log2 d


n

(
O�1�ip log2 d

d

)d/log2 d


i

≤ e−d
2/log4 d

for n sufficiently large.
Comparing the above probability with the probability that G�n�p� is d-regular,

which is bounded below in (9), and recalling our assumption d ≥ n6/7+ε, we con-
clude that a random regular graph Gn�d has a.a.s. the property stated in the propo-
sition.

Recall that a graph G is called s-degenerate if every subgraph of it contains a
vertex of degree at most s. It is easy to see that every s-degenerate graph is �s+ 1�-
colorable. Going back to the above proposition we see that a.a.s. in Gn�d every
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subset V0 ⊂ V of size �V0� ≤ n/ log4 n spans a �2d/ log2 d − 1�-degenerate and thus
a 2d/ log2 d-colorable subgraph.

Now we can present an argument for the upper bound on χ�Gn�d�. As long as
G still has at least n/ log4 n uncolored vertices, we find an independent set of size
�2 − o�1�� logb d, which exists a.a.s. by Theorem 2.3. We color it by a fresh color
and discard. If less than n/ log4 n vertices remain uncolored, then we color the
spanning subgraph of uncolored vertices by using at most 2d/ log2 d colors, based
on Proposition 5.1. Altogether we use at most �1 + o�1��n/2 logb d + 2d/ log2 d =
�1 + o�1��n/2 logb d colors.

Proof of Theorem 2.7. The upper bound χl�Gn�d� = O�d/ log d� is a simple corol-
lary of Theorem 2.1 and the following theorem, proved by Vu [32, Theorem 4.1]. A
similar result was proved for d = "�polylog n�, by Alon et al. [3].

Theorem 5.2. Let G be a d-regular graph on n vertices. Assume that the codegrees of
G are at most d1−ε, for some positive constant ε. Then

χl�G� = O�d/ log d��

The lower bound "�d/ log d� = χ�Gn�d�, for the case d > n1/2 log n, follows
from the upper bound on the independence number (Theorem 2.2). If nα ≤ d ≤
n1/2 log n, the same upper bound O�n log d/d� (with a more generous multiplica-
tive constant) still holds (a.a.s.) for the independence number. The proof is similar
to that of Theorem 2.2 and is omitted.

6. THE SECOND EIGENVALUE

Proof of Theorem 2.8. Let A�Gn�d� be the adjacency matrix. Observe that

n∑
i=1

λ4
i �Gn�d� = tr�A4�Gn�d���

It follows that tr�A4�Gn�d�� − d4 ≥ ρ4�Gn�d�. On the other hand, tr�A4�Gn�d�� is
the number of closed walks of length 4 in Gn�d and can be expressed as

tr�A4�Gn�d�� = nd2 + nd�d − 1� + 8C4�Gn�d��

where C4�Gn�d� is the number of cycles of length 4 in Gn�d. By the definition of x,

C4�Gn�d� ≤ 1
2

(
n

2

)( d2

n
�1 + x�
2

)
�

and a routine calculation yields that

ρ4�Gn�d� = O�nd2 + d4x��

The theorem follows.
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7. CONCLUDING REMARKS

One of the main obstacles to deriving results on Gn�d for large d is the lack of an
accessible model of dense random regular graphs. Such a model would be desired to
simplify the computations such as those in the proof of Theorems 2.1 and 2.2. Even
the asymptotic probability that G�n�p� is regular for n−1/2 < p = o�1/ log n� is not
known (but would follow immediately from the asymptotic enumeration conjecture
in [25]).

On coloring problems, the main unknowns remaining from the results in this
paper are the asymptotic values of χ�G� and χl�G� for d below n6/7+ε and the
range of asymptotic equality of these two parameters. The range of concentration
of χ�G�, α�G�, and χl�G� is yet to be established.

For the eigenvalues we still have no great knowledge of their asymptotic distribu-
tion (though some results for small d occur in the references to [34]). In particular,
a result on ρ which sharpens Theorem 2.8, like that in [17] mentioned in Section 1,
would have useful applications.
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